联系我们| 收藏本站| 在线留言 欢迎光临西安绿森环保科技有限公司网站!

绿森环保

1工业废气处理系统设计\制作\安装一条龙服务

全国服务热线:18792968727

热搜关键词: 工业粉尘处理 有机废气处理 酸碱废气处理 废气处理方案 VOC处理方案

联系绿森环保

全国服务热线:029-86355332
  • 手机:18792968727
  • 传真:029-86355332
  • QQ:664648487
  • 邮箱:lvsenep@163.com
  • 地址:西安市高新区草堂工业区北转盘十字西段

工业锅炉废气处理解决方案

具体废气工况,需进行有针对性的参数汇总,工艺评估和方案设计,具体请联系我公司技术人员,进行相应的交流和解答。

热力生产工艺与污染物产生

1、热力生产工艺

锅炉热力生产工艺主要包括燃烧系统、贮存系统、制备与输送系统、辅助系统和污染防治系统等。典型锅炉热力生产工艺流程图参见附录A。

燃烧系统按照燃烧方式可分为层燃炉、流化床炉和室燃炉;贮存系统主要包括燃料料仓/储罐、燃料堆场、粉煤灰库、脱硫副产物库、灰渣场等;制备与输送系统主要包括燃料制备装置、燃料上料装置、燃料输送装置等;辅助系统主要包括软化水制备系统和冷却水系统;污染防治系统主要包括烟气、废水、噪声和固体废物污染防治系统等。锅炉废气处理

燃料主要包括煤、油、气、生物质成型燃料等。

锅炉热力生产工艺过程中使用的化学药剂主要包括脱硫剂(石灰石、石灰、氧化镁、氢氧化钠、碳酸钠等)、脱硝还原剂(尿素、氨水等)、水处理药剂(混凝剂、助凝剂、絮凝剂等)等。

2、工业燃煤锅炉污染物产生

废气污染物主要包括颗粒物、二氧化硫、氮氧化物、汞及其化合物等。其中颗粒物主要产生于燃烧系统、贮存系统、制备与输送系统;二氧化硫、氮氧化物、汞及其化合物产生于燃烧系统。

工业锅炉污染预防技术

清洁燃料替代

锅炉排污单位宜选用符合国家、行业、地方相关质量标准的低硫分、低灰分燃料,位于高污染燃料禁燃区内的锅炉,不得使用列入《高污染燃料目录》中的燃料。

根据不同地方清洁燃料供应情况,锅炉排污单位应按照宜电则电、宜气则气、宜煤则煤、宜热则热、宜生物质则生物质原则,有序推进清洁能源替代。

低氮燃烧技术

低氮燃烧技术主要包括低氮燃烧器(扩散式燃烧器和预混式燃烧器)、炉膛整体空气分级燃烧、烟气再循环等技术,具有投资费用低、运行简单、维护方便等特点。采用该技术时,应注意一氧化碳排放问题。

低氮燃烧器技术普遍适用于室燃炉,根据燃烧方式可分为扩散式燃烧器和预混式燃烧器。锅炉除尘

扩散式燃烧器通过物理结构的优化以实现空气和燃料分层、分阶段送入炉膛,扩大燃烧区域、降低火焰温度,减少氮氧化物生成。采用扩散式燃烧器的燃煤、燃油和燃天然气锅炉氮氧化物产生浓度可分别低至200~600mg/m3、200~400mg/m3、60~200mg/m3。

预混式燃烧器适用于燃气锅炉,根据降氮原理的不同可分为贫燃预混与水冷预混燃烧器。贫燃预混燃烧器是利用高过量空气降低火焰温度,同时采用金属纤维等结构分割火焰,稳燃的同时可使温度分布均匀,减少氮氧化物生成。以天然气为燃料时预混燃烧器的氮氧化物产生浓度可低至15~80mg/m3。水冷预混燃烧器采用间接冷却的方式将火焰根部的热量从高温区带走,降低预混火焰高温,减少氮氧化物生成,以天然气为燃料时水冷预混燃烧器的氮氧化物产生浓度可低至15~50mg/m3。

炉膛整体空气分级燃烧技术适用于层燃炉和燃煤室燃炉,通过分层布置的燃烧器将燃烧所需空气逐级送入燃烧火焰或火床中,使燃料在炉内分级分段燃烧,减少氮氧化物生成,产生浓度可低至300~800mg/m3。

烟气再循环技术适用于层燃炉和燃气室燃炉,通过将炉膛出口的低温烟气作为惰性吸热工质引入火焰区,降低火焰区的温度和燃烧区的氧含量,减缓燃烧热释放速率,从而抑制氮氧化物生成。该技术通常与其他低氮燃烧技术结合使用。

炉内脱硫技术

通过合理匹配吸收剂喷射区域温度、钙硫比、吸收剂粒径等参数,炉内脱硫效率可达50%;当燃用硫分不大于0.5%的煤时,炉膛出口二氧化硫浓度可低至400mg/m3。该技术多用于流化床锅炉,与炉外湿法或烟气循环流化床法脱硫系统相结合。投资成本相对较低,配置简洁、能耗低、占用空间小;存在降低锅炉热效率、增加炉膛磨损、钙硫比大、运行物耗较高等问题。

锅炉废气污染治理技术

锅炉烟气污染治理技术

燃煤锅炉宜采用袋式除尘、电除尘、电袋复合除尘等技术实现颗粒物达标排放。燃油锅炉和燃气锅炉炉膛出口颗粒物浓度不达标时,宜采用袋式除尘技术实现达标排放。燃生物质成型燃料锅炉宜采用机械除尘+袋式除尘技术实现颗粒物达标排放。

燃煤锅炉宜采用石灰石/石灰-石膏湿法、氧化镁法、钠碱法和烟气循环流化床法脱硫技术实现二氧化硫达标排放。锅炉排污单位有稳定废碱来源(如碱性废水等)的宜选择“以废治废”的烟气脱硫方式实现二氧化硫达标排放。燃油锅炉、燃气锅炉和燃生物质成型燃料锅炉二氧化硫排放不达标时,可参考燃煤锅炉选择烟气脱硫技术。

锅炉氮氧化物排放控制宜优先采用低氮燃烧技术,若不能实现达标排放,应结合烟气脱硝技术实现达标排放。

锅炉汞及其化合物排放控制宜采用协同治理技术,若不能实现达标排放,应采用炉内添加卤化物或烟道喷入活性炭吸附剂等技术实现达标排放。

锅炉粉尘污染治理技术

袋式除尘技术

通过合理选择滤料种类、过滤风速等参数,实现除尘效率不小于99%。当采用常规针刺毡滤料,过滤风速宜不大于1.0 m/min时,颗粒物排放浓度可低至30mg/m3以下;当过滤风速宜不大于0.9m/min 时,颗粒物排放浓度可低至20mg/m3以下。当采用高精过滤滤料,过滤风速宜不大于0.8m/min时,颗粒物排放浓度可低至10mg/m3以下。当处理烟气循环流化床法脱硫后的高粉尘浓度烟气时,过滤风速宜不大于0.7m/min。该技术基本不受燃烧煤种、烟尘比电阻和烟气工况变化等影响,运行温度应高于酸露点10~20℃;燃煤层燃炉和生物质成型燃料锅炉宜设置必要的保护措施,降低滤袋烧毁风险;系统阻力相对较大、占地面积小、投资成本相对较小。

干式电除尘技术

通过合理设计烟气流速、比集尘面积等参数,实现除尘效率90%~99.8%;当比集尘面积不小于100m2(/ m3/s)时,颗粒物排放浓度可达50mg/m3以下;当比集尘面积不小于110m2/(m3/s)时,颗粒物排放浓度可达30mg/m3以下。该技术适用于比电阻在1×104 ~1×1011Ω·cm之间的燃煤锅炉颗粒物脱除,对高铝、高硅等高比电阻粉尘以及细颗粒物脱除效果较差;系统阻力小、占地面积和投资成本大。

湿式电除尘技术

通过合理设计烟气流速、比集尘面积等参数,实现除尘效率60%~80%,脱硫后采用该技术颗粒物排放浓度可低至10mg/m3 以下;该技术分为板式湿式电除尘技术和蜂窝式湿式电除尘技术,适用于湿法脱硫后烟气深度净化,可有效去除细颗粒物及湿法脱硫后烟气中夹带的液滴,并能高效协同脱除SO3、汞及其化合物等;系统阻力相对较小、占地面积小、投资成本大。

电袋复合除尘技术

通过合理选择滤料种类和合理设计过滤风速及电区比集尘面积等参数,实现除尘效率不小于99%;当采用常规针刺毡滤料,颗粒物排放浓度可低至20mg/m3以下;当采用高精过滤滤料,颗粒物排放浓度可低至10mg/m3以下。该技术适用于燃煤锅炉烟气颗粒物的脱除,具有袋式除尘和干式电除尘的优点,滤袋使用寿命长,对难荷电颗粒物、细颗粒物及高比电阻粉尘脱除效果佳;系统阻力、占地面积和投资成本均相对较大。

二氧化硫治理技术

石灰石/石灰-石膏湿法脱硫技术

采用石灰石或石灰的浆液作为脱硫剂,通过控制塔内烟气流速、钙硫摩尔比和液气比等参数,实现脱硫效率90%~99%。采用该技术,当入口二氧化硫浓度不超过3500mg/m3时,二氧化硫排放浓度可达35~200mg/m3。该技术适用于各种燃料、炉型和容量的锅炉烟气二氧化硫治理,煤种、负荷变化适应性强,对颗粒物和重金属及其化合物有协同治理效果,需考虑脱硫废水和脱硫副产物的处理和处置;系统阻力、占地面积和投资成本均相对较高。

氧化镁法脱硫技术

采用氧化镁熟化形成的氢氧化镁浆液作为吸收剂,通过控制塔内烟气流速、镁硫摩尔比、液气比等参数,实现脱硫效率90%~99%。采用该技术,当入口二氧化硫浓度不超过3500mg/m3时,二氧化硫排放浓度可达35~200mg/m3。该技术适用于各种燃料、炉型和容量的锅炉烟气二氧化硫治理,对煤种、负荷变化适应性强,需考虑脱硫废水处理和脱硫副产物的资源化利用;系统阻力、占地面积小和投资成本相对较低,吸收剂消耗成本相对较高。锅炉脱硫

钠碱法脱硫技术

采用钠基物质(氢氧化钠、碳酸钠等)作为吸收剂,通过控制塔内烟气流速、反应摩尔比、液气比等参数,实现脱硫效率90%~99%。采用该技术,当入口二氧化硫浓度不超过4500mg/m3时,二氧化硫排放浓度可达35~200mg/m3。该技术适用于各种燃料、炉型和容量的锅炉烟气二氧化硫治理,吸收剂反应活性高,存在系统腐蚀问题,需采用高效除雾器解决排放烟气易携带可溶盐的问题;系统阻力、占地面积和投资成本相对较低,吸收剂消耗成本相对较高。

烟气循环流化床法脱硫技术

采用钙基吸收剂,通过控制钙硫摩尔比、烟气停留时间等参数,实现脱硫效率85%~95%。采用该技术, 当入口二氧化硫浓度不超过3000mg/m3时, 二氧化硫排放浓度可达35~200mg/m3。该技术适用于燃用中、低硫煤的燃煤锅炉或已配套炉内脱硫的燃煤流化床锅炉,烟囱无需特殊防腐,耗水量较少;脱硫副产物中亚硫酸钙含量较高,综合利用受到一定限制;系统阻力和占地面积大,投资成本和吸收剂成本大。

氮氧化物治理技术

选择性催化还原法(SCR)脱硝技术以氨水、尿素等作为脱硝还原剂,在催化剂作用下,通过合理设计氨氮摩尔比、催化剂活性、催化剂层数等参数,实现脱硝效率50%~90%。采用该技术,当入口氮氧化物浓度不超过500mg/m3时,氮氧化物排放浓度可达30~150mg/m3。该技术脱硝催化剂形式主要为蜂窝式或板式,脱硝效率相对较高,负荷适应性强;系统阻力相对较大,占地面积大,投资成本和运行成本相对较大;应控制氨逃逸质量浓度低于2.5mg/m3和SO2/SO3转化率低于1%。

选择性非催化还原法(SNCR)脱硝技术以氨水、尿素等作为脱硝还原剂,通过选择合理反应温度区域、氨氮摩尔比等参数,实现脱硝效率20%~70%。该技术应用于层燃炉和室燃炉,脱硝效率可达20%~40%;采用该技术,当入口氮氧化物浓度不超过500mg/m3时,氮氧化物排放浓度可达125~400mg/m3;该技术应用于流化床锅炉,脱硝效率可达40%~70%;采用该技术,当入口氮氧化物浓度不超过500mg/m3时,氮氧化物排放浓度50~200mg/m3。该技术适用于燃煤和燃生物质成型燃料锅炉,占地面积小,投资成本和运行成本相对较小;应控制氨逃逸质量浓度低于8mg/m3。工业锅炉废气处理解决方案

SNCR-SCR联合法脱硝技术

以氨水或尿素等作为脱硝还原剂,通过选择合理反应温度区域、氨氮摩尔比、催化剂活性、催化剂层数等参数,实现脱硝效率50%~87.5%,氮氧化物排放浓度可达50~150mg/m3。该技术适用于燃煤和燃生物质成型燃料锅炉,系统阻力和占地面积大,投资成本和运行成本介于SNCR和SCR之间,喷氨精确度要求高,催化剂磨损较大;应控制氨逃逸质量浓度低于3.8mg/m3、SO2/SO3转化率低于1%。

大气污染防治可行技术

锅炉排污单位选择污染防治可行技术时宜综合考虑许可排放限值、燃料性质、炉型,及实际应用情况等。具体的大气污染防治可行技术参见表2。